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forest = RandomForestClassifier(

forest = forest.fit(X_train, y)

forest.score(X_train, y)
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Figure 1: In this notebook, eight cells were created and executed (t = −1), before changing and re-executing cells, which updated the
data and changed the model (t = 0). Loops visualizes the notebook history next to the notebook. The compact notebook history provides
an overview on how the notebook’s structure and content was changed over time. The rounded rectangles represent the notebook cells,
color-coded according to their status: unchanged, changed, added, or deleted relative to the previous state. Inside executed cells, we also
show the number of executions, and an icon indicating if the cell contains markdown, code, tables, or visualizations/images. The detailed
notebook history also reveals how the cells’ content changed, using difference visualizations specific to the various types of content present
in notebooks.

Abstract
Exploratory data science work is often described as an iterative process with cycles of obtaining, cleaning, profiling, analyzing,
and interpreting data. These cycles create challenges within the linear structure of computational notebooks, leading to code
quality, recall, and reproducibility issues. We present Loops, a set of visual support techniques for iterative and exploratory
data analysis in computational notebooks. Loops leverages provenance information to provide direct feedback on the impact
of changes made within the notebook. Through compact visual representations, we trace the evolution of the notebook over
time, highlighting differences between versions. Detail views allow users to compare the cell content and output. Loops is
compatible with various types of content present in notebooks, such as code, markdown, data, visualizations, or images. Loops
not only improves the reproducibility of notebooks, but also supports analysts during their data science work by showing the
effects resulting from changes and facilitating the comparison of multiple versions. We demonstrate our approach’s utility and
potential impact through two use cases and feedback from notebook users spanning various backgrounds.

CCS Concepts
• Mathematics of computing → Exploratory data analysis; • Human-centered computing → Information visualization;
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1. Introduction

Computational notebooks are the tool of choice in many
data science applications [CFGT21]. As a literate programming
tool [Knu84], computational notebooks allow analysts to com-
bine code, output, and rich textual descriptions within a single
document, combining narration of the process with execution.
Notebooks are now capable of assembling incredibly diverse for-
mats, including different programming languages (code), multime-
dia content as part of the narrative text, and interactive widgets
and visualizations as part of the output. The most commonly used
notebook technology is the Jupyter family [KRKP∗16], the use of
which has doubled annually in recent years [PZK∗22].

The promise of literate programming—interspersing explana-
tory text with code—is reproducibility of the result. How-
ever, previous research has shown that reproducibility is by no
means the norm when using computational notebooks [Guz20,
PMBF19, WZC∗19, WKLZ20]. A large-scale study by Pimentel
et al. [PMBF19] showed that only 24.11% of 863,878 public
Jupyter Notebooks could be re-executed and just 4.03% produced
the same results. Computational notebooks “can foster poor cod-
ing practices” [Per21] (such as relying on out-of-order execu-
tion), become messy [HHB∗19], and as a result, are often not
reproducible [PMBF19, Guz20]. Data analysis is particularly af-
fected by poor coding (and documentation) practices, as analysts
often start with a vague understanding of their resources and
goals [AZL∗19, HWKP20]. The information foraging and sense-
making loop describes how analysts search, filter, and extract in-
formation, continuously developing a mental model that aligns with
the new information and their existing knowledge [PC05].

In the series of loops that make up the analysis process, each iter-
ation refines the understanding and brings the analyst closer to their
goal. This looping behavior makes it difficult for analysts to under-
stand the state of their notebook. Analysts often update their code to
reflect new insights or hypotheses, losing track of previous attempts
and results [RTH18]. Alternatively, they may duplicate their code
to compare different approaches, resulting in messy notebooks that
contain outdated or redundant code [RTH18, WDBD21]. Further-
more, they may re-execute only parts of their notebooks, leading
to out-of-order executions that break the logical flow and introduce
hidden dependencies [RTH18,PMBF19,HHB∗19]. These practices
make it difficult to reproduce the analysis process and results for the
analysts and others who want to reuse or verify their work.

Previous works tried to mitigate these issues by capturing the
provenance of notebooks [SKR18, KJO∗19] or providing live sup-
port for exploratory and/or iterative data science tasks [EJLW∗22,
EGMP23]. However, to date, these two approaches have been stud-
ied independently and rarely combined.

To remedy this, we introduce Loops, our primary contribution,
a novel visual exploration approach that tracks and visualizes the
changes of a notebook over time, allowing analysts to better un-
derstand the impact of their changes and the notebook’s history.
Loops juxtaposes the notebook with compact representations of the
analysis “loops”, highlights the changes made, and their impact on
the output. We argue that by tracking the provenance of notebooks
and visualizing the history and differences, we can assist analysts
in their ongoing analysis by revealing the impact of their changes.

We also contribute a discussion of the different types of content
found in computational notebooks and how differences in that con-
tent between different states can be effectively visualized. We im-
plement Loops as an open source JupyterLab extension, available
at https://github.com/jku-vds-lab/loops. We val-
idate our approach through use cases and feedback from notebook
users that demonstrate its utility.

2. Data Science in Computational Notebooks

As an interdisciplinary field, data science uses scientific methods
to extract insights from data [Sch21]. Figure 2 presents the data
science workflow synthesized by Crisan et al. [CFGT21]. The non-
linear process apparent from the figure is described as an “iterative
conversation” [Per18] between the analyst and the data, wherein
the analyst executes code, observes the outcomes, makes modifica-
tions, and repeats this cycle. Several studies describe the process
as circular, non-linear, or opportunistic, often necessitating starting
from scratch [Sch21, AZL∗19, CFGT21].
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Figure 2: The data science process, as presented by Crisan et
al. [CFGT21]. Our approach has the most impact on the steps filled
with green, while analysts also benefit from Loops in the steps with
green outlines.

Computational notebooks support such incremental and iterative
analyses well, enabling analysts to edit, arrange, and execute small
code blocks in any order. However, this execution of cells in any
order compromises reproducibility. Large-scale studies document
that the order of cells in a notebook and their execution order do not
match for over a third of the notebooks analyzed [PMBF19,Guz20].
In addition, the execution order cannot be precisely tracked by the
notebook alone, as only the last state of a cell is visible. In most
cases, public notebooks have multiple large gaps in the execution
sequence appearing in the notebook, where it is unclear what ana-
lysts executed and if it still exists in the notebook [PMBF19]. These
problems also occur when using conventional version control sys-
tems, and since the notebook contains outputs and meta-data, the
differences are messy and confusing [CPH∗20]. Also, when en-
countering dead ends, analysts often fail to document intermediate
steps [RTH18, CPH∗20]. Thus, notebooks are generally not suited
to document their provenance.

Exploring the history of a notebook was rated the most chal-
lenging task after deployment in Chattopadhyay et al.’s sur-
vey [CPH∗20]. When asked about remedies for tracking the evolu-
tion of a notebook, analysts favored automated versioning of their
code and outputs [CPH∗20]. However, tracking provenance alone
is not sufficient. The tracked information must also be easily re-
trievable and easily digestible, for example, by relating it to a cur-
rent state. We conclude that analysts can benefit from techniques
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that allow them to easily compare visual and textual changes be-
tween notebook versions, such as different data versions or tested
alternatives [CPH∗20, AZL∗19, RTH18]. These requirements have
guided the design of our approach.

3. Related Work

We start this section by discussing research focused on tracking
and visualizing the provenance of computational notebooks. While
notebooks with tracking capabilities often support limited compar-
ison of different versions of the same notebook and cells within the
notebook versions, we dedicated a separate section to cover exist-
ing works on content-specific visual comparison aspects.

3.1. Tracking and Visualizing Notebook Provenance

Commercial platforms, such as Observable or Google Colab, offer
cloud-based environments for analysts to work in notebooks. These
platforms automatically track changes and store snapshots of note-
books on every change. JupyterLab creates a snapshot every time
the user saves a notebook. Users can browse these notebook snap-
shots by date, but they do not provide details about the changes
made in each snapshot. In Google Colab, users can also com-
pare the textual content of two selected snapshots, such as code,
markdown, or textual output. Comparisons of datablocks or graph-
ical output, including visualizations and images, are not supported.
ProvBook [SKR18] is an extension to Jupyter Notebook that tracks
the provenance of notebooks and allows users to compare individ-
ual cells to their previous versions, showing the previous code, the
output it produces, and metadata. MLProvLab [KSKR21] tracks
the notebook’s provenance and displays each version as a graph,
where the nodes are the notebook’s cells and variables serve as
the connecting edges. The graph’s evolution over time can be in-
spected by browsing the executions. MARG [RSBB23] visualizes
an annotated notebook as a graph with cells as nodes and connects
them in the order of the analysis. This way, divergence points in the
analyses, after which analysts try out multiple alternatives, can be
displayed.

Most closely related to our work is Verdant [KJO∗19], which au-
tomatically records the provenance of analyses conducted in note-
books and visualizes it in two tabs: the activity and artifacts tab.
Like the histories in Google Colab and Observable, the activity tab
lists time-stamped revisions. For each revision, a barcode visual-
ization summarizes the changes of a revision to the notebook. Se-
lecting a revision opens the notebook’s old state in a separate tab
in JupyterLab. Verdant’s artifact tab lists the cells and displays the
input and output versions. By clicking on a cell, users can inspect
the history of that cell across all notebook revisions. In all views,
only differences in the cell’s input are highlighted.

In contrast to the works described above, our visualization of the
notebook and its history resembles that of the user’s notebook. We
represent the notebook cells as rectangles aligned from top to bot-
tom next to the user’s notebook. Loops visualization of the note-
book history shows the notebook structure, how it changes over
time, if and how the cells have changed, and summarizes the differ-
ence between the various types of content in the notebook.

3.2. Visual Comparisons

The types of content present in notebooks are diverse. In this sec-
tion, we discuss ways to compare them visually. We focus on static
content in notebooks, i.e., plain and rich text, code, data, and im-
ages, excluding dynamic content such as audio, video and embed-
ded websites.

Gleicher et al. [GAW∗11] categorize comparative visualization
into juxtaposition, superimposition, and explicit representation, ap-
plicable individually or in combination. Juxtaposition—presenting
objects side-by-side or over time—can be easily implemented and
applies to any visual representation but relies on memory for com-
parison. Superimposition—placing objects in the same coordinate
system—is common for spatial data or comparisons of similar ob-
jects but can easily lead to clutter. Explicit representation directly
encodes differences, eliminating the need for mental comparisons.
To contextualize differences, explicit representation is frequently
combined with superimposition or juxtaposition. In the following,
we discuss visual difference encodings for the various content types
present in notebooks.

Text difference visualizations are widely employed in text edi-
tors. Overleaf and Google Docs, for example, track and highlight
textual changes, also for rich text. Myers’ algorithm [Mye86] is
most commonly used to create human-readable text differences and
is also the default option of git to show code differences. However,
due to the unique structure of code, alternative approches have been
shown to provide better results [NHM20]. While changes to plain
and rich text are commonly visualized within the document with
explicit encodings, most code editors default to juxtaposing the
compared versions and explicitly encoding additions and removals,
using a red/green color highlight, for example. The Git extension
for JupyterLab [Jup23] also shows differences in code and plain
text of juxtaposed notebooks. We support both views in Loops and
use the existing work to visualize plain, rich, and code differences.

Gleicher [Gle18] also points out that image differences could
be identified at different abstraction levels: on the data, feature, and
image level. The data level refers to the raw data to create the im-
age, feature refers to the abstracted data (e.g., the height of a bar in
a histogram), and image to the resulting imagery. As our approach
operates on the visible output of Jupyter notebooks, we focus on
related work that compares images (and data visualizations) at the
image level.

Current notebook environments and the related work discussed
so far juxtapose graphical outputs in the notebook side-by-side
without any explicit difference encoding. For superimposition,
blending and color weaving techniques have been proposed to com-
bine information from layered images [GAW∗11, MHG10]. To ex-
plicitly encode differences between images, a common method is
to convert them to grayscale and create a difference image by sub-
tracting the individual pixel values of one image from the corre-
sponding pixel values of the other [GW18, p. 87–90]. Pixel differ-
ences can be color-coded, for example, in red and green for negative
and positive differences, respectively [HRTV06]. However, global
translations, antialiasing, or compression in lossy formats can cause
massive but irrelevant differences [HRTV06, Ima, Res23]. To sup-
press these artifacts, fuzzy difference methods can be applied that
either take neighboring pixels into account [HRTV06], or allow a
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certain distance between the compared pixels in color space [Ima].
Resemble.js [Res23] offers a nuanced approach, calculating pixel-
based image differences with options to ignore subtle or even all
color differences, transparency, and/or antialiasing. It also provides
different modes to visualize the amount of the difference. While
the above methods allow for comparing two images, VAICO by
Schmidt et al. [SGB13] supports more than two images. It identi-
fies regions of differences (RoDs), applies hierarchical clustering
to these RoDs, and creates an average of all compared images for
contextual information. The RoDs are superimposed on the aver-
age image as colored polygons, which can be explored individually
through interaction.

To identify differences in data visualizations, Ondov et
al. [OJEF19] and Jardine et al. [JOEF20] evaluated the efficacy
of superimposition and juxtaposition for various tasks in crowd-
sourced experiments. While participants performed best with ani-
mated and superimposed images when it came to estimating cor-
relations or identifying the largest difference between the im-
ages, juxtaposed images performed better in tasks where the im-
age with the largest mean or range had to be identified [JOEF20].
The dependence on the user’s task is also reflected in Diff in the
Loop [WEDD22], where histograms can be compared in juxta-
posed or superimposed views, or in a delta view that shows the
distribution change. In Loops, two images or data visualizations
can be juxtaposed or superimposed, and per-pixel differences can
be explicitly highlighted. If the images/visualizations are superim-
posed, their opacity can be varied to alternate between them.

Vis-a-Vis [BB21] is an approach to visualizing the evolution and
differences in visualizations in the context of changes in code and
code structure. Vis-a-Vis displays the current source code, output,
and a revision tree, grouping revisions by code structure. The inter-
face displays outputs linked to a structure, along with a comparison
image that shows the per-pixel variance of the outputs.

As data is fundamental to data science, data differences are
at least equally important as code differences. Data sets evolve
over time as analysts filter, clean, update, or expand it during their
work. However, data difference visualizations are rarely integrated
into the tools used by analysts. Sutton et al. [SHGC18] propose a
method similar to text diffs that finds a human-readable transfor-
mation function from one data set to another, for example, in-
sert(i, C) to insert column C at position i. In the follow-
ing, however, we focus on the visualization of data differences.
TACO [NSH∗17] introduces an approach to visualizing changes
in data tables. The technique categorizes changes as additions
and removals, merges and splits, reorders, and content changes.
TACO juxtaposes the compared tables and shows a heatmap of the
differences, highlighting content modifications, additions, and re-
movals through distinct colors. Furthermore, the changes are sum-
marized in a histogram, offering an overview of each version.
CHAMELEON [HWKP20] is a visual analytics approach that fo-
cuses on the impact that changes in data have on machine learn-
ing projects. They show a data version timeline, from which two
versions can be compared in detail. Changes in the data’s distri-
bution are visualized with superimposed diverging histograms for
each feature. In addition, a prediction change matrix and a sensitiv-
ity histogram explicitly show how the machine learning model’s

predictions changed. Eckelt et al. [EHA∗23] visualize data sets
that change over time as time curves [BSH∗16]. Juxtaposed sum-
mary visualizations and explicit difference visualizations show how
the data changed between two versions, with differences sorted
based on the extent of change. Perhaps most closely related to our
work is Diff in the Loop [WEDD22], which contains a code edi-
tor that tracks changes to code and runtime variables. A separate
view shows how the data set has changed through code edits by
visualizing the distribution of all affected features. In Loops, we
explicitly visualize the differences in tabular data by color coding
changes, additions, and removals. The effects of these differences
on the subsequent analysis are not visualized directly but through
the difference visualizations in the following cells as soon as they
are re-executed.

4. Loops Approach

In Loops, we leverage provenance information to visualize the
notebook’s history and the differences between notebook versions.

The notebook’s history is visualized next to the notebook (see
Figure 1). Changes to the notebook’s content and structure are ag-
gregated into states, which we display states either in (1) a compact
representation that provides an overview of how the notebook has
developed in terms of structure, time, and content; or (2) a detailed
representation that reveals how the cells’ content changed. We have
created difference visualizations for the various types of content
present in notebooks. These differences can be further explored in
the comparison panel (see Figure 5).

The provenance is automatically recorded, as requested by
analysts [CPH∗20]. For this purpose, we store everything an
analyst sees while working in the notebook and thus influ-
ence their information-foraging and sensemaking loops. The
goal is not to collect comprehensive provenance that guaran-
tees reproducibility—including details on the environment and
hardware—but rather to support and make the analysis process
comprehensible. Every time users execute a cell in the notebook
and thus update it, we save the cells of the notebook, including their
order, which cell was active and executed, their input and output,
and how these inputs and outputs were displayed.

4.1. Visualizing and Comparing Notebook States

The recorded provenance is a list of changes and executions that
can quickly become uninterpretable and overwhelming [CPH∗20].
Therefore, we have considered how the provenance states can be
best aggregated. Previous work has grouped notebook states in tem-
poral proximity [KM18]. For Loops, however, we decided to take
a different approach and by default group all states that are exe-
cuted in linear order. This means that states are aggregated as long
as the analyst executes the notebook from top to bottom, even if
the analysis is interrupted between executions. Although the anal-
ysis process is not linear, its steps still build on each other: Data
must be loaded before exploration, cleaned before modeling, etc.
These dependencies are also reflected in the structure of the note-
book [RSBB23]. Going back in the notebook—and re-evaluating
already executed parts — corresponds to a new iteration of the anal-
ysis loop. In Figure 1, a new state is introduced as the analyst edits
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Figure 3: Compact presentation of an analysis over several weeks. A rounded rectangle represents each notebook cell, color-coded ○ green
for insertions, ○ red for removals, ○ yellow for content changes, and ○ gray for unchanged cell content. Inside executed cells, we show
how often each cell was executed plus an icon indicating if the cell contains markdown or code. For code cells, we additionally adapt
the icon if the cell outputs a table or visualization/image. In the first state, represented as the first column of the history, the analyst
created and executed multiple cells. The cells at the end of the notebook were edited iteratively, and the entire notebook was executed again
only a few times. The cells of the states are aligned around the active cell, emphasized with a blue shadow.

1

2 3

Figure 4: History of a code cell that outputs data. The cell was
created in the first state 1 , recognizable by the green border. In the
second state 2 , 13 rows were added, of which five are shown in the
notebook. In the third state, five columns were removed 3 .

and re-executes the first cell of the notebook again, before updating
the data processing step and re-running the modeling step.

The aggregated states are visualized and arranged horizontally
according to their creation order. Each cell is represented as a rect-
angular block with rounded corners, akin to a notebook cell. The
cells are arranged vertically, identical to the notebook. Cells of ad-
jacent states are connected with lines. Each state offers two levels
of detail: a compact and a detailed representation. The compact
representation provides an overview of the state, indicating added,
changed, executed, and deleted cells. The detailed representation
also reveals the cells’ content and how they have changed compared
to the previous state. By visualizing the structure of the notebook
and how it changed, we address the analysts’ need for a retrievable
and comparable history [CPH∗20].

4.1.1. Compact State Representation

In the compact state representation, shown in Figure 3, gives an
overview of the evolution of the notebook by showing all cells in
the same small size. We embed icons that indicate whether a cell
contains Markdown or code. For outputs, we encode the output
type, i.e., whether it is a table or a visualization/image. Further-

more, an execution counter displays how often the cell was exe-
cuted in the aggregated state. This helps identify the parts of the
notebook that have been modified the most frequently or not ex-
ecuted at all. Cells are color-coded according to their status: un-
changed, changed, added, or deleted relative to the previous state.
In accordance with common comparison tools for text and code, we
use color-blind safe shades of ○ green and ○ red for additions and
removals, ○ yellow for content changes, and ○ gray for unchanged
content. Furthermore, the currently active cell in the notebook is
emphasized with a ○ blue shadow (compare Figure 3).

The active cell also serves as the anchor point for aligning the
other cells. When the analyst changes the active cell in the note-
book, our provenance visualization re-aligns the cell’s history ver-
tically for better comparison.

Due to the small width, we can display many states on the screen,
depending on the resolution. Figure 3 shows an analysis carried out
over several weeks with 211 versions and 27 states. Due to the small
cell height, we can display even larger notebooks in their entirety
without scrolling [RTH18].

4.1.2. Detailed State Representation

The detailed representation, shown in Figure 1, visualizes the
changes in cell input and output that occurred in a state, allow-
ing analysts to better understand their changes’ impact. By default,
Loops uses the compact representation for all but the latest aggre-
gated state, but users can freely switch between the representations.

In the detailed state representation, we utilize a degree-of-
interest (DoI) function [Fur06] to determine the content that can
be displayed for each cell. This function is applied to both the input
and the output (where applicable). Markdown cells with headlines
and code cells that output visualizations or images are assigned a
DoI of 1, which indicates high interest. These elements provide
structure to the document, and their full display in the detailed state
representation facilitates navigation [RTH18, CPH∗20]. Similarly,
the currently active cell is also assigned a DoI of 1, allowing easy
tracking of the cell’s history, as illustrated in Figure 4. For all other
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inputs and outputs, the DoI is set to 1 if there was a change, and
zero otherwise. The content of the inputs and outputs of cells with
a DoI of 0 is not displayed. Cells where both the input and the
output have a DoI of 0 are shown in the compact representation.
This approach allows the state representation to focus on changes
and their impact across the notebook. When the DoI is 1, a dif-
ference visualization for the respective content type is displayed,
which color-codes changes, and the colored background indicating
the cell’s state is replaced with a colored frame. Individual differ-
ence visualizations provide further details and are described in the
following section. Due to space constraints in the state representa-
tion, the difference visualizations are reduced in detail: Data diffs
do not show the actual content but indicate additions, removals, and
changes; and for image and visualization diffs, the size of high-
lighted change regions is increased (at the expense of unchanged
regions) to ensure visibility in the thumbnail-like display.

4.2. Comparison of Cells and Their Output

Due to the limited size, the difference visualizations used in the de-
tailed state representation (Section 4.1.2) can only hint at changes.
To access a more comprehensive view, users can open a separate
comparison panel from the history of each cell. This panel features
large difference visualizations that display the full content of the
cell’s input and outputs. When the comparison panel is opened, the
compared cell is set as the active cell. This aligns the notebook and
the history for easy reference.

The panel allows for switching between the cell input and any
existing output. The selection of the appropriate difference vi-
sualization is automatic and based on the content type. A code-
comparison view is displayed for cell inputs. For outputs, the dif-
ference visualization varies based on the type: plain text, rich text
(from Markdown, for example), code, tables, images, or data visu-
alizations. All difference visualizations can display the two com-
pared versions side-by-side (juxtaposed) or unified (superimposed)
in a single view, each with explicit encoding of differences, offer-
ing flexibility in viewing and comparing changes. In the side-by-
side comparison, the two versions are displayed separately. Dele-
tions are highlighted in one version, and insertions are highlighted
in the other. In the unified comparison, a single visualization in-
corporates both versions and their differences. In both, changes are
explicitly encoded by applying the same color-coding that is used
for the cells: ○ green and ○ red for insertions and removals, and
○ yellow for content changes (that is, of table cells or pixels of the
image).

4.2.1. Text and Code Comparison

For the visualization of text and code differences, we based our de-
signs on the standard methods used in word processors and editors.

Text comparison can be performed at different levels: charac-
ter, word, or line level. Our difference visualization uses the My-
ers difference algorithm [Mye86], a widely used algorithm to de-
tect insertions and deletions in text. Myers difference algorithm is
particularly effective for comparing text documents, as it can effi-
ciently identify the longest common subsequence of words or lines
between two texts, making the display intuitive and easier to under-
stand. We use this approach for plain and rich text.

For visualization of code differences, we use a dedicated code
editor. This editor provides syntax highlighting and employs the
Myers difference algorithm but with additional post-processing
steps applied to the detected changes (see Figure 5). These ad-
ditional steps account for the unique characteristics that the code
presents in contrast to text documents to ensure that the differences
are meaningful and relevant. In the detailed state representation,
syntax highlighting is disabled so that only the changes are empha-
sized by color (see Figure 1).

4.2.2. Data Comparison

Understanding how data changes over the course of an analysis is
crucial. It may be through iterations by the analyst or through ex-
ternal updates to the data [AZL∗19, MLW∗19, HWKP20].

In Loops, these changes are explicitly visualized. Inspired by
TACO [NSH∗17], our visualization compares two data tables as
they are output in the notebook, identifying changes in the table
cells and adding and removing columns or rows. Columns or rows
that are added or removed are highlighted in green and red, re-
spectively, while table cells with changed content are shown in yel-
low (see Figure 4). Changing the order of columns is not considered
a change, as the columns’ data remains unchanged.

For the state representation, the raw data is not shown. Instead,
we represent all table cells in uniform size, color-coded by the type
of change (see Figure 4). The raw data of the table cells is shown in
the comparison panel (see Figure 5). We render removed data with
a strike-through font styling without further color-coding. Com-
pared to regular text, we use a different visualization approach to
avoid nesting the colors representing the change type.

4.2.3. Comparison of Images and Visualizations

In Loops, we compare them at the image data level (and assume
visualizations are rendered as raster graphics) and thus do not dif-
ferentiate between images and data visualizations in the following.
While the comparison is made at the image data level, the image
difference visualization is part of a broader context that includes
differences of all other steps leading to the image change. This
could be changes in the data used to create a visualization or al-
terations in the code that defines and styles the visualization.

Balancing the needs for comparison between generic images
(photos, diagrams) and data visualizations is difficult. Given the
data science focus of this work, we prioritize the requirements for
comparing data visualization over those for generic images. For
instance, a slight change in brightness may not matter in a photo-
graph but can be crucial in a heatmap. Image subtraction is used
routinely for enhancing differences between images [GW18, p. 87]
and is useful when changes in successive images need to be de-
tected [BB08, p. 429]. This is the primary use case of our work: to
highlight changes between iterations.

We use pixel-based subtraction to create the difference visual-
izations for images. The images are first padded to the same size
if their sizes vary, with the added pixels initialized as white and
opaque. The padded pixels are inserted at the top and right borders.
Data visualizations typically have their axes at the left and bot-
tom borders, so padding at the top and right ensures that the axes

© 2024 The Authors.
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Figure 5: Detailed code, data, and image/data visualization differences. The data difference visualization shows that multiple “Unnamed”
columns were removed from the data, while a “Test Column” is added. The difference of the data visualization shows changes in the two
concatenated charts: While the bar chart’s last bar became longer, the last quartile range of the last box plot becomes smaller.

remain aligned. The images are then subtracted and subsequently
turned into grayscale by calculating the perceived luminance of
each pixel [BB08, p. 256]. As the pixel-based approach may result
in many small disjoint changes, we apply additional morphological
operations to make the difference visualization more comprehensi-
ble, akin to summarizing text changes on a word rather than a char-
acter level. Differences are dilated twice, which merges adjacent
differences into one, using a 3×3 kernel for the detailed compari-
son and a 9×9 kernel for the detailed state representation to ensure
visibility in the scaled-down representation. Afterwards, the differ-
ences are eroded once, using the same kernel, to reduce the size
of the differences again. Performing the erosion only once (when
we dilated twice) results in the difference being slightly larger than
the changed content, forming a small border around the changed
pixels. This approach is inspired by the background color used to
mark changes in text, providing a clear and distinct visualization of
modifications. The calculated difference is then transformed into an
RGB image. Pixels that changed from white to a different color are
highlighted in green, from color to white in red, and from one color
to another in yellow (see Figure 5). We also calculate the bounding
boxes of the changes. In initial experiments, we used rectangular
or convex hull bounding boxes to highlight changed areas, which
made the changes within the bounding box challenging to identify.

Instead, we now count the bounding boxes to inform the user about
the number of changed regions in the image, first removing any
bounding boxes nested within others.

Users can choose whether the images with explicit difference
encoding are displayed side-by-side or in unified mode. In the uni-
fied difference visualization, the images are combined with alpha
blending, and the opacity levels can be controlled with a slider (see
Figure 4).

We found that whether unified or side-by-side layouts are bet-
ter is highly task-dependent. Generally, superimposition used by
our unified difference visualizations seems most helpful if the
compared data is similar enough [JOEF20, GAW∗11]. To deter-
mine similarity and decide on the layout to use by default, we
evaluated multiple image similarity metrics: (i) Structured Sim-
ilarity Index (SSIM) [WBSS04], (ii) Normalized Mututal Infor-
mation (NMI) [SHH99], and (iii) Oriented FAST and Rotated
BRIEF (ORB) [Bra00]. In our experiments, however, these met-
rics were not suited for application to data visualizations due to
their different purpose of application (SSIM, NMI) and the lack of
unique features in marks (ORB). Instead, we divide the number of
changed pixels by the total number of pixels. The resulting relative
pixel similarity is also displayed next to the difference visualiza-
tion. We present the difference visualizations in a unified layout as
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long as the relative similarity of the pixels is at least 90%. If the
similarity of pixels is less than 75%, we remove the explicit encod-
ing of differences, assuming that the images are different enough to
be recognized without aids. In the detailed comparison, both can be
changed by the user at any time, as can the conversion of the images
to grayscale so that only the explicit difference encoding is colored.
In the state representation, we always show the unified difference
visualization with the images in grayscale (see Figure 1).

5. Implementation

We have implemented the open source prototype of Loops as an ex-
tension for JupyterLab that is available through JupyterLab’s built-
in extension manager and GitHub: https://github.com/j
ku-vds-lab/loops/. A deployed instance of JupyterLab with
Loops is available at: https://mybinder.org/v2/gh/jku
-vds-lab/loops/main; this instance also contains notebooks
with interesting provenance information. Although the screenshots
and use cases presented in this work use Python, Loops can be used
with any programming language available in Jupyter, as it only op-
erates on Jupyter’s frontend and has no dependencies on the note-
book’s kernel.

The extension adds our notebook overview visualization to
JupyterLab’s side panel and waits for user interactions with the
notebook, after which the new state of the notebook is recorded.
We use Trrack [CGL20] to store the notebook states as a prove-
nance graph. When the user saves the notebook, the provenance
graph is embedded in the notebook’s metadata, such that it does not
have to be transferred separately. For the difference visualizations,
we use html-diff [Tan23] for rich text differences, the Monaco Ed-
itor [Mic23] for code differences, D3 [BOH11] to create the data
difference visualizations, and OpenCV [Bra00] to calculate and vi-
sualize image differences.

6. Use Cases

We demonstrate Loops by means of two use cases. The first use
case presents an analysis of Austrian concert data conducted over
several weeks and demonstrates Loops’ visualization of the analy-
sis history. The second use case demonstrates how we support an-
alysts in comparing the results of a what-if analysis on data from
lung cancer patients. The notebooks of the two use cases, together
with the provenance of the analysis, are available in the deployed
instance of Loops: https://mybinder.org/v2/gh/jku
-vds-lab/loops/main. Furthermore, we collected qual-
itative feedback from notebook users with various backgrounds,
which we summarized in Section 7.1.

6.1. Use Case 1: Multi-Week Concert Data Analysis

Our use case presents an analysis of Austrian concert data con-
ducted over several weeks and demonstrates Loops visualization of
a long analysis process (see Figure 3). The data set is a long-form
table with 501 entries from 2003 to 2023, with features describing
the artist, date, location, ticket price, and act (headliner/support).
The history contains 211 versions of the notebook, represented in
27 states. The final notebook consists of 16 cells, which is a typical
size for notebooks [RTH18].

We load the concert data from an external Google Sheets spread-
sheet, which is updated regularly and allows us to show differences
that are not caused by code changes. We started our analysis on Oc-
tober 6th by importing the concert data and applying a few initial
data wrangling steps. We then profiled the tabular data to examine
available years and how distributions change over time. The pri-
mary goal of the analysis was to investigate the increase in ticket
prices over the years. While we created various plots using differ-
ent visualization techniques, it was necessary to repeatedly return
to the data wrangling step to update the data types to fit the plot.
After updating the data, the visualization cell was changed up to
13 times in one state. As changes are aggregated as long as they
are made from top to bottom, our state representation shows the
visualization in which a changed data representation resulted.

We re-executed the notebook on October 17th and 31st. The
detailed state representations reveal no code changes, but outputs
were changed due to external data updates. As cell outputs are over-
written upon execution, investigating how an output changes with
new data becomes challenging, particularly with multiple outputs
in the notebook. In this context, Loops enhances our ability to track
changes by clearly highlighting output differences.

The most extensive phase of our analysis occurred on November
6th, involving 123 of 201 versions. We extended the visualization
of price trends over time with regression lines and adjusted prices
for inflation by including a data set containing inflation rates.This
required several iterations, and we used Loops to verify the changes
using the difference visualizations shown in Figure 5.

In the last change on November 27th, we executed the entire
notebook, which caused the visualizations to change due to the up-
dated concert and inflation data.

The compact history of the notebook shown in Figure 3 provides
several insights: (1) This first analysis step is represented in the
first five states of Figure 3 that summarize 46 notebook versions.
They show that after creating and executing the cells with basic vi-
sualizations of distributions, most changes and executions aimed at
visualizing the price trend. This involved repeated cycles of chang-
ing the data format and visualizations. (2) Versions in which we
resumed the analysis after a break are evident as the notebook was
re-executed from the top, ensuring that required libraries and the
data are loaded. This can be seen in states 57, 66, 88, and 211 of
Figure 3 that correspond to October 16th, 17th, November 6th, and
27th, respectively. (3) The history also shows that during the ex-
tensive analysis on November 6th, no changes were made to previ-
ously created cells.

6.2. Use Case 2: What-If Analysis on Cancer Patient Data

The analysis in this use case builds on our previous work com-
paring lung cancer patient cohorts from the AACR Project GE-
NIE [EAB∗22,AAC17]. We aimed to validate the mutational differ-
ences between these cohorts, as reported in the literature [NAK21].
However, we found that the cohort data also considerably varied in
the amount of missing data. Our approach identified mutations in
the FGFR4 gene as a key feature to differentiate between patient
cohorts, although they differed primarily by the amount of missing
data. We hypothesized that this gene would have minimal impact if
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Figure 6: Analysis of cancer patient data in JupyterLab with Loops. The visualization of the notebook’s evolution shows two states cor-
responding to the initial execution of the notebook and the following what-if analysis. The second state adds a cell to substitute missing
values A , which changed the data B , the model’s accuracy C , and the features that are most important to distinguishing cohorts D . In the
notebook, the histogram shows that FGFR4 mutations are now almost equally distributed across the cohorts E .

the data were complete. In this analysis, we now want to go beyond
the available data and perform a what-if analysis, substituting the
missing data [Kos23].

We begin our analysis by replicating our previous findings. We
import the necessary libraries, load the cancer patient cohort data,
and inspect the data set. As our goal is to identify differences be-
tween cohorts using a random forest model, we separate the fea-
tures used for the prediction and the cohort labels into distinct vari-
ables. We perform basic feature selection, eliminating features with
the same value for all patients, as these do not provide any infor-
mation for our model. After this, we again inspect the data set to
verify the changes. We also create a visualization to show the dis-
tribution of FGFR4 genetic mutations among the analyzed cohorts.
After preparing the data, we set hyperparameters, train the random
forest model, and output its accuracy. We create a bar chart to vi-
sualize the model’s most important features, and the results align
with our previous analysis.

Next, we substitute the missing data and assess how the results
of the analysis change. We extend our initial feature engineering
step and substitute the missing genetic data with a nearest-neighbor
approach using the patient’s data with the most similar genetic
profile (Figure 6 A ). As we re-run the subsequent steps in our
notebook, the changes in the data are reflected in the output (Fig-
ure 6 B ) and the histogram of the FGFR4 mutations, which are
now almost equally distributed across the cohorts (Figure 6 E ). A
slight decrease in the model’s accuracy can be observed in the state
difference, suggesting that previously missing data played a role in
the differentiation of the cohorts (Figure 6 C ). In the new model,
FGFR4 is no longer one of the most important feature distinguish-
ing cohorts. The overall order of important features has changed
significantly, as highlighted by the bars’ altered labels. EGFR now

ranks as the most significant gene, followed by TP53 and PIK3CA.
KEAP1, and PTPBR have been added to the list, while STK11 and
KRAS have been removed (Figure 6 D ).

This use case exemplifies our approach to test and compare dif-
ferent analysis paths. The same procedure can analyze the effects
of different substitution methods, models, or hyperparameters. The
AACR Project GENIE is an ongoing effort with continuous data
updates, so the analysis will need future repetition. With loops, any
resulting output differences can be quickly identified.

7. Discussion

In this section, we first summarize the feedback we have received
from notebook users, and then go on to discuss the challenges en-
countered and avenues for potential improvements.

7.1. Qualitative User Feedback

We gathered feedback on our approach by interviewing notebook
users with various backgrounds: a student (S) of AI, a professional
data scientist (DS), a researcher (R) working in the field of human-
centered AI, and a lecturer (L) teaching undergraduate and graduate
students in the field of AI.

In the interviews, we first asked them questions about how they
work in notebooks. A common thread among S, DS, and R is the
creation of multiple cells, each containing code with slight varia-
tions to facilitate the comparison of alternatives. When asked about
how they deal with alternatives once they had picked a solution,
none of the participants could articulate specific criteria they apply.
S and DS leaned towards retaining all code, even if it resulted in
cluttered notebooks. Notably, all four participants had previously
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experienced that they needed code they had deleted. The four note-
book users mainly work alone on notebooks; collaboration only
takes place asynchronously, if at all. These responses are consistent
with the results of previous studies [RTH18, AZL∗19, CPH∗20].

As a next step in the interview, we showed them a notebook
we had prepared based on the concert data analysis. We explained
the data, the analysis goals, and the notebook structure. We then
opened the compact representation of the analysis history. Partic-
ipants stated that the color-coding with green for new and red for
removed cells was obvious, yet, they were not sure about the mean-
ing of yellow cells, triggering us to add a legend to loops. They
liked that the cells’ execution can be tracked, as they regularly ex-
perience issues with out-of-order execution and needed to find out
how they got to a particular state. We also asked them to identify
the cells that changed the most. After exploring the compact state
representation, we started executing the notebook, showing how the
history aligns with the currently active cell and how it is updated
as cells are executed. The execution of the notebook with data that
have been updated since its last execution (see use case 1) resulted
in changed output. Since participants were not yet familiar with
the data, they could not tell how outputs changed. We changed the
last state to the detailed representation, revealing the changes in
data and visualizations. We also opened the comparison panel for
multiple cells to demonstrate the text, code, data, and image differ-
ence visualizations. The participants recognized how the familiar
encoding of code differences was translated to other types of con-
tent. They consider the difference visualizations to be most useful
when the changes are subtle. Participant R creates large compos-
ite figures and finds the difference visualization to be particularly
useful when styling these figures to identify elements that have not
been updated.

Overall, participants found the visualization of state and cell
content differences intuitive. However, for data, DS, R, and L ex-
pressed a desire to extend the exploration of differences beyond the
visible subset to the entire data. Although Loops currently does not
show these, we indicate changes in the size of the data in addition to
the changes in the visible content (see Figure 4). R and S suggested
an onboarding process for features and, most importantly, inter-
actions. L considered the integration of the analysis process into
the grading of assignments. Furthermore, R emphasized the utility
of showing a notebook history in collaborative scenarios, allowing
users to track changes made after handing over the notebook. Sim-
ilarly, S expressed a desire for transparency in collaborative work,
suggesting a feature that identifies contributors to changes.

7.2. Limitations

We have demonstrated the utility of our approach in the use cases
and received positive feedback from potential users. In the follow-
ing, we discuss scalability limitations of our technique regarding
long version histories, notebooks with a large number of cells, and
notebook cells with extensive content.

Scalability. The compact state representation scales well with the
increasing number of cells. However, the number of states depends
on the user’s execution patterns, and horizontal space is limited. To

enhance temporal understanding, we plan to incorporate a continu-
ous time scale alongside the discrete time steps of the states. This
addition will allow users to identify periods during which the anal-
ysis was carried out or paused. Visualizing code differences within
the state representation also runs up against spatial constraints, of-
ten requiring users to scroll to examine variations. Our attempts to
reduce code differences to the neighborhood of changed content en-
countered challenges, especially when exploring a cell’s history. To
address this, we are considering a more nuanced degree-of-interest
function to control the amount of visualized code in a changed
state and its adjacent states [AHSS14]. Our pixel-based approach
to visualize differences between images is also constrained, partic-
ularly with images of different sizes and shifts within the image.
Figure 6 shows that the title, grid lines, and x-axis change as they
shift slightly to the left. Scaling up visualizations results in many
differences, even when the content remains unchanged. We argue
that data visualizations could benefit from a specialized difference
approach that is aware of the visualized data, to ensure that the dif-
ference visualizations are robust to style changes.

Collaboration and Reactive Notebooks. Collaboration and co-
authoring of notebooks is an important topic in data analy-
sis [Kos23]. The notebook users we interviewed also share their
notebooks with others and usually take turns working on the note-
book with their colleagues. Some scholars argue that reactivity is
a prerequisite for real-time collaboration [Per21]. Reactive note-
books automatically update the output as the data used by these out-
puts change, removing concerns about out-of-order executions. We
still see advantages in using Loops with reactive notebooks. First,
changing a single cell can result in changing many outputs. Loops
can help users recognize and understand these changes. Second,
tracking the provenance is still important to understand the analysis
evolution or to compare alternatives. To visualize who contributed
to changes in the notebook, we consider expanding the state repre-
sentations with avatars of the collaborators. For real-time collabo-
ration, it is necessary to adapt the aggregation of notebook versions
when users work on different notebook parts.

8. Conclusion

Analysts face challenges and pain points when working with note-
books [CPH∗20]. With the Loops approach described in this pa-
per, we address the challenges related to reproducing and compar-
ing notebooks. Loops tracks the provenance of notebooks to as-
sist analysts during their work. We visualize the evolution of the
notebook over time and highlight differences between versions.
We have carefully designed visualizations that consistently visu-
alize changes for the whole notebook and various types of content
present in notebooks. This gives analysts direct feedback on their
changes and supports them at various stages of the data science
process (see Figure 2). Based on the feedback from four notebook
users, we are confident that Loops can support data science pro-
cesses in notebooks effectively.
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