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Abstract. Combining explainable artificial intelligence and information
visualization holds great potential for users to understand and reason
about complex multidimensional sequential data. This work proposes a
semi-supervised two-step approach for extracting long- and short-term
patterns in low-dimensional representations of sequential data. First,
unsupervised sequence clustering is used to identify long-term patterns.
Second, these long-term patterns serve as supervisory information for
training a self-attention-based sequence classification model. The resulting
feature embedding is used to identify short-term patterns. The approach
is validated on a self-generated dataset consisting of heart-shaped paths
with different sampling rates, rotations, scales, and translations. The
results demonstrate the approach’s effectiveness for clustering semantically
similar paths and/or path sequences. This detection of both global long-
term patterns and local short-term patterns facilitates the understanding
and reasoning about complex multidimensional sequential data.
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1 Introduction

Data are collected continuously from various sources, ranging from human per-
ception to sensor-based recordings. Medical devices, environmental data, video
surveillance, or computational simulations are examples that create multidimen-
sional sequence or time series data [2]. However, the amount of data that can be
recorded surpasses our capacity to analyze it manually. To cope with these vast
amounts of data, we rely on algorithms and visual representations to process the
data and detect meaningful patterns.

One common approach for understanding and visualizing multidimensional
sequence data is to represent it with projected paths, two-dimensional projections
of the sequences that are generated by applying Dimensionality Reduction (DR)
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Fig. 1: Processing steps for the visualization of multidimensional sequential data.

techniques [2I3l4]. The low-dimensional representation can come with distortions,
which can be quantified by certain quality measures, such as correlation coef-
ficients or trustworthiness/continuity [9]. Despite these possible mismappings,
multidimensional projections belong to the most important visualization tech-
niques in this context. Figure[I] depicts a typical processing pipeline. To effectively
find patterns within projected paths, Visual Analytics (VA) tools are employed,
combining interactive visualization techniques with automatic analysis methods
to support users in the analysis process [6/T1].

In order to unveil hidden information effectively, these tools must incorporate
automatic pattern detection methods. However, existing frameworks often lack
this capability and are predominantly tailored for specific applications, limiting
their broader applicability. Additionally, we argue that the applied pattern
detection methods must be explainable to understand and trust the results [5].
This paper, therefore, proposes an automatic pattern detection pipeline. The
main contribution is a semi-supervised two-step pattern extraction pipeline for
automatically detecting long- and short-term patterns in projected sequential
data:

— In the first step, long-term patterns are detected using unsupervised sequence
clustering based on Dynamic Time Warping (DTW). The use of DTW ensures
that semantically similar sequences form clusters.

— In the second step, a self-attention-based sequence classification Neural
Network (NN) identifies short-term patterns by clustering attention scores of
the self-attention mechanism for 1D convolutions with different kernel sizes.

A joint exploration of the extracted long- and short-term patterns in the low-
dimensional representation can help users understand and reason about patterns
in the high-dimensional sequence data.
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2 Background & Related Work

This section provides preliminary definitions concerning multidimensional se-
quential projections and presents the state-of-the-art in pattern detection and
eXplainable Aritficial Intelligence (XAI) for time series and sequential data.

2.1 Preliminaries

Definition 1. A sequence, or time series X = (xg, X1, ..., X7) is a time-ordered
set of real values with x; € R, where T is the length of the sequence and d is the
dimension of the feature vector for each data item in the sequence. If d =1 we
specify the sequence X as univariate, if d > 1 we call it a multidimensional or
multivariate sequence.

Definition 2. We define Dimensionality Reduction (DR) of a multidimensional
sequence as a transformation Xo = ®(Xpign), which maps the high-dimensional
set of features X; nign € Rsh to a low-dimensional set of features Xi,low € Réwow
under the condition of dpigh > diow-

Definition 3. A two-dimensional projected sequence is defined as a sequence
P = Xy, with Xi low € R2.

Definition 4. We define a long-term pattern as a set of projected paths with a
persistent and recurrent behavior or structure over the whole sequence. Sequences
within a long-term pattern have similar temporal characteristics over their entire
length T'.

Definition 5. A short-term pattern can be seen as a descriptive segment within
a brief period of time for a single projected path. The length of a short-term pattern
is defined as t; < T and the union over the number of short-term patterns K
Ufil t; =T corresponds to the sequence length.

2.2 Pattern Detection for Sequential Data

For multidimensional sequential datasets, it is a common approach to use the com-
bination of dimensionality reduction and information visualization [I1I]. In such
scenarios, engineers or data scientists try to automatically generate interactive
representations and visualizations to gain insights into otherwise hidden patterns.
Traditionally this follows a typical processing pipeline that starts with forwarding
the multidimensional data to a DR algorithm and visualizing the projections in
the two-dimensional space. Then, an analyst can interact with the visualization
to better understand the data. To fill the missing gap of automatically detecting
patterns and providing hints for interesting regions within the projections, auto-
matic detection of patterns needs to be incorporated into these processing steps.
Especially XAI methods for time series are suitable for this purpose since their
main focus is on finding explanations, descriptions, regularities, and correlations
in the data to gain a more detailed understanding.
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The problem of automatically detecting patterns in projections can be viewed
as a semi-supervised task. Unsupervised methods can reveal the structure and
features of the data, e.g., clusters in the two-dimensional space, or clusters
in the time series feature representation. Liao summarizes numerous different
possibilities for clustering time series data [I8]. Once the interesting regions are
marked and identified in the underlying data, the human analyst can try to
derive patterns, which can then be detected with the help of supervised methods.
If the patterns have no temporal relationship, it might be an easy task to train
supervised classifiers, e.g., decision trees, support vector machines, and Neural
Networks (NNs). However, for temporal patterns, additional concepts, such as
pattern matching, might have to be introduced. Mendhurwar et al. provide a
qualitative overview of different time series and associated pattern-matching
possibilities [§].

Literature focusing on the automatic and unsupervised extraction of sequential
patterns in multidimensional projected paths is scarce. Most closely related to our
work is an approach by Ali et al., which uses a convolutional autoencoder-based
architecture to learn feature representations of the projections [I]. The learned
feature embedding is then used for visualization purposes to enable tasks such as
pattern and outlier analysis.

2.3 XAI for Time Series Data

According to XAI literature [T0/T6], several definitions and categorization schemes
have been developed for XAI in the time series domain. We distinguish between
post-hoc and ante-hoc approaches to reflect the point in time when explainability
is introduced. Post-hoc explainability approaches are separated from the model
itself and can provide insight into the model’s learned behavior without actively
changing its structure. They are mainly applied after the training and applied to
black-box models like standard NNs. Ante-hoc methods, such as models with a
built-in attention mechanism, are models that can be considered to be directly
interpretable due to their internal structure and design.

Another categorization scheme to discriminate different XAI methods is
related to the granularity of the produced explanation. The three main categories
are time point-based explanations, subsequence-based explanations, and instance-
based explanations [106].

Time point-based explanations focus on specific time points within a time
series. They provide insights and assign a relevance score or weight to every time
point of a time series [16].

Subsequence-based explanations refer to sub-parts or segments of the time
series. They offer explanations that are relevant to specific patterns or trends
observed within those subsequences and identify sub-parts of a time series
respounsible for the classification outcomes [16].

Instance-based explanations rely on the whole time series instance and the
overall behavior and characteristics to reason about the decision. These explana-
tions are often related to global explanations which try to identify explanations
generalizable for the whole dataset [16].
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Fig.2: Overview of the proposed automatic detection pipeline for long- and
short-term patterns.

In Section [3] we use this categorization scheme to contextualize the individual
explanations created with our approach. For long-term pattern extraction, we
cluster time series instances. The similarity measure applied by the clustering
algorithm provides instance-based explanations. The self-attention-based super-
vised sequence classification architecture for short-term pattern extraction can
be categorized as ante-hoc and time point-based method.

3 Methodology

The proposed explainable pattern detection approach can be interpreted as a
combination of information visualization and pattern detection. The crucial part
of extracting patterns is divided into two steps, which are dedicated to extracting
long- and short-term patterns (Figure .

The first step of extracting long-term patterns from a set of projected paths
is performed with the help of unsupervised sequence clustering. This approach
uses Dynamic Time Warping (DTW) and K-Means for finding patterns in the
entire set of sequences. The second step of extracting short-term patterns uses a
self-attention-based supervised sequence classification architecture. The extracted
cluster labels from step one serve as supervisory information and the learned
attention embeddings for the classification task are used to cluster and visualize
short-term patterns.

Hohman et al. propose an interrogative categorization scheme of Deep Learning
(DL) based visual analytics concepts [5]. We use these slightly modified questions
to categorize our work:

— Why do we care about long- and short-term patterns in projected paths?
— When can we apply the extraction of long- or short-term patterns?

— How do we extract the patterns?

— What do we visualize in the different steps?

— Which XAI category do the results belong to?
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The following two subsections provide detailed answers to these questions for
long-term (Section [3.1) and for short-term patterns (Section [3.2)).

3.1 Grouping Paths — Long-term Patterns

Long-term patterns describe similar temporal characteristics of sequences over
the whole time series. The overall goal of extracting long-term patterns is to
identify trends and gain a deeper understanding of the behavior and structure of
the underlying data.

Why do we care about long-term patterns in projected paths?

Facing a new and unknown large set of projected paths, without any prior
knowledge about groups or clusters, it is of great interest to reveal hidden
information. Prominent reasons why revealing long-term patterns in projected
paths is important are:

— Facilitated Perception: The capability of grouping similar paths together can
resolve the issue of cluttered scenes. Visualizing all paths at once might be
of interest for certain tasks (e.g., to understand distributions). However, the
resulting visual clutter can make more specific insights hard to obtain. By
highlighting/color-coding the extracted clusters, or aggregating them visually,
clutter can be avoided.

— Trend analysis: Long-term patterns can help to find dynamic trends in the
data such as strong increases or decreases.

— Structure and behavior understanding: Understanding relationships between
different long-term patterns can help to better understand the process, struc-
ture, and behavior of the underlying data.

— Anomaly detection: Projected sequences that strongly differ from long-term
patterns can be identified as unique, abnormal patterns.

— Decision-making support: Identifying long-term patterns can be highly helpful
for making decisions in order to improve control strategies or the behavior of
the system.

When can we apply the extraction of long-term patterns?

The detection of long-term patterns as proposed in this work is designed to be
applied after all multidimensional sequences have been recorded, stored, and
projected to the two-dimensional space.

How do we extract the patterns?

We define a long-term pattern as a set of projected paths P with similar temporal
characteristics. For evaluating the similarity within the temporal domain of
the projections we utilize DTW [12] as similarity measure and K-Means as an
unsupervised clustering approach.

What do we visualize?

The combination of DTW and K-Means allows us to assign a cluster label to each
projected path P. The labels are used for color encoding. By highlighting the
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Fig. 3: Network architecture for learning the feature embeddings (head;, heads,
heads). Choosing different kernel sizes for the 1D-Convolutions in the attention
heads leads to the advantage that each head can extract features at different
scales.

cluster centroids, trends within the data can be made more visually prominent.
Additionally, highlighting all paths with their corresponding label/color encoding
allows for different preservation of the long-term patterns within the projections.

Which XAT category do the results belong to?

The cluster labels provide explanations on a global level, whereas the DTW
similarity measure between the different sequences is used to discriminate the
paths on a per instance level.

3.2 Highlighting Patterns in Projections — Short-term Patterns

Short-term patterns, in the context of projected paths, can be seen as descriptive
segments within a brief period of time. In contrast to long-term patterns, short-
term patterns are more specific and capture more dynamic properties within the
projections.

Why do we care about short-term patterns in projected paths?

Short-term patterns can be used to identify sudden changes or short sequences
with interesting behavior, e.g., abrupt changes in the latent space of a neural
network during training, specific subsequences in rubrics cube solving or chess
games [4JT4].

When can we apply the extraction of short-term patterns?

The extraction of short-term patterns in our approach is applicable once we have
the cluster labels of our long-term patterns. The labels are necessary because
the long-term patterns serve as supervisory information for short-term pattern
extraction.

How do we extract the patterns?

In the proposed approach, we utilize the labeled long-term patterns (projected
path clusters), as supervisory information to train a sequence classification
model (Figure |3).
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The proposed NN architecture can be described by
MultiHead(p) = Concat(head;, heads, heads) W, (1)

where each head; is defined by:

QK
Vd
= Attention(Convlsz(p),Convldf((p),Convldly(p)).

head; = Attention(Q;, K;, V;) = softmax( )VZ-

2)

The architecture was designed to derive patterns on a local scale and is inspired
by the self-attention mechanism [7I7]. Unusual for a time series classification
problem, we are not interested in the task itself, but rather we are interested in
the learned feature embeddings head; € R?*T. The attention vectors result from
the softmax scaled dot product between the three components, query Q, key
K, value V, € R2*7T" All three embeddings are generated with corresponding
1D convolutions. The recent work of Tang et al. [I5] provided valuable insights
about the importance of using different kernel sizes to extract features at different
scales. We used these insights and designed our model to extract features with
different kernel sizes, which results in different receptive fields of the corresponding
convolutions of each head;. Additionally, we apply padding to the resulting feature
maps, in order to preserve the original sequence length. The 1D convolutions are
designed to have two input channels and two output channels. This allows for
direct visualization of the feature embedding in the two-dimensional space and
the temporal dimension. Additionally, this two-dimensional design enables an
interpretation of the extracted representations (attention scores head; 1, head; 2)
for each of the two dimensions of the analyzed projected path P € R?*7. After
having trained the architecture until convergence for the individual dataset,
we analyze the learned feature embedding of each head; by applying K-Means
clustering. The resulting cluster labels are then the label/pattern information
and can be used for visualization in the original two-dimensional projections.

What do we visualize?

The cluster labels for the short-term patterns resulting from the process described
above are then used for color-encoding sub-sequences of the projected paths.
Which XAI category do the results belong to?

The proposed self-attention-based sequence classification model can be categorized
as an ante-hoc method. We use the attention matrices of the individual projected
paths to derive the short-term patterns. The granularity of the explanations is

based on a point-based clustering of the resulting attention scores for specific
instances.

4 Experimental Results

The following section provides experimental results of the proposed methodology
evaluated for a simulated dataset that consists of paths representing drawn heart
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Fig. 4: Two-dimensional path of a drawn heart and their associated temporal
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Fig.5: The set of 1600 random augmented two-dimensional paths of drawn heart
halves and their associated temporal representation on the individual coordinate.

halves at different positions, scales, rotations, and speeds. We also provide the
code and the data to reproduce the result&ﬂ

4.1 Simulated Heart Drawings

The purpose of this example is to illustrate the effectiveness of the proposed
method, with a more detailed analysis of DTW-based K-Means clustering for
finding long-term patterns and the self-attention-based sequence classification
model used for finding the short-term patterns.

For generating a single path in the form of a heart in the two-dimensional
space we use

16sin(0)3 + €;

P(#) = 13 cos(@) — 5 cos(26) — 2cos(30) — cos(46) + €3]’ )

where we define 8 = 6, as a linearly spaced array of 100 values between 0 and ,
for the right half of the heart and 8 = 65 in a range between 27 and 7 for the

! https://github.com/mbitob/long-and-short-term-pattern-detection
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Fig. 6: Difference between the DTW similarity measure and the Euclidean distance
for two heart drawing sequences from the same source, but different augmentations
in rotation, scale, translation, and resolution. One observes that DTW is capable
to resolve the temporal dependencies, while the Euclidean distance is not able to
resolve the similarity. For the sake of visualization, sequence 2 is shifted vertically.

left half. The additive random noise €; and €5 are set to normally distributed
random variables with zero mean and a standard deviation of 0.1. The two paths
resulting from equation [3] evaluated with 0y, and 6 are visualized in Figure [4]

To generate a set of random augmented two-dimensional paths, we use the
transformations

10¢,

:| 5 Tscale = |:568 SO:| ) and Ttrans = (01 t?/ ) (4>
Y 001

T {cos(gb) — sin(¢)
0 Isin(¢) cos(¢)
where ¢ represents a rotation of the path, s, and s, are the scaling factors of
the individual dimensions, and ¢, and ¢, are used for controlling translation.
For the experiments, we generate 1600 augmented paths, where we randomly
sample ¢ € [1/6m,1/47], 54, s, € [0.5,1.5] and ¢, t, € [-10,10] from a uniform
distribution. In order to simulate different drawing speeds we apply random
rescaling in the temporal domain, combined with padding. The whole set of
generated sequences including the temporal evolution for the x and the y axis are
depicted in Figure [5| Without any prior knowledge, or the extraction of clusters
and patterns, it would be a hard task for the data analyst to gain any insights

and knowledge of this cluttered representation.

4.2 Long-term Patterns

Combining DTW with K-Means for extracting long-term patterns and grouping
paths with similar temporal characteristics is effective. But DTW is an iterative
process and its computational complexity is higher compared to a distance
measure such as the Euclidean distance. To highlight the effects and differences
between these two similarity measures, we consider two heart drawing sequences
from the same source, but with different rotation, scale, translation, and resolution,
as depicted in Figure [f] DTW is an alignment-based similarity measure and
tries to align the features which match distinct patterns of the time series [12].
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Fig.7: A comparison between the FEuclidian and the DTW similarity measure
for the extraction of long-term patterns for the set of random augmented two-
dimensional paths of drawn hearts.

The similarity is then evaluated by the distance of the matched points. On the
other hand, when using the Euclidean distance, no feature matching takes place,
which means that when a prominent pattern is shifted in time, the Euclidean
distance results in a higher dissimilarity measure compared to DTW. Exactly
this behavior is observable in Figure [6}] The similarity measure with DTW for
the two investigated sequences is dprw = 81.9, whereas the Euclidean distance
of deyclidian = 81.9 is much higher.

Next, we investigate the results of extracting long-term patterns on the
whole set of drawn heart halves and compare the effects of using DTW and the
Euclidian distance as a distance measure. Figure[7a]shows the extracted long-term
patterns with the Euclidean distance as a dissimilarity measure. Knowing that
there should be two distinctive directions in this graph—i.e., paths going from
top to left, and paths going from top to right—we notice that the clustering
algorithm can resolve this pattern to a certain degree. However, due to the
various different augmentations within the paths, the distinction is not very clear.
This confusion is also confirmed by visualizing only the cluster centroids. In
contrast, by applying DTW as a dissimilarity measure for K-Means (Figure ,
we find a much more accurate result of the clusters. The cluster centroids exactly
reflect the fact that there are two classes (left heart halves paths, and right heart
halves paths). Despite the higher computational complexity of the DTW based
clustering approach, it is worth applying it, especially when patterns within the
projected paths are shifted in the temporal domain.
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Fig. 8: Extracted multi-head attention scores and the resulting short-term patterns
for the two long-term patterns of the simulated heart drawing dataset.

4.3 Short-term Patterns

Here we provide experimental results for the detection of short-term patterns
within the long-term patterns extracted with DTW as a dissimilarity mea-
sure (Figure . The color encoding for the short-term patterns is based on the
attention scores (feature embeddings head;) of the proposed sequence classifi-
cation model (Section. For this specific experiment, we train the proposed
multihead-attention classifier with kernel sizes R; € {3,9,15} for the three dif-
ferent attention heads head;. We use Adam as an optimizer and train for just
10 epochs with a learning rate of 1072, The cluster labels/long-term patterns
serve as supervisory information for the training. The small amount of epochs is
sufficient to reach a training accuracy of over 92 %. The attention scores and
the resulting short-term patterns for the two extracted long-term sequences are
illustrated in Figure [§] Comparing the attention scores of Figure [8a] and the
curvature has similar characteristics for both scenarios. The difference mostly
lies in the slope, start, and end values of the scores, which correlate with the
underlying original two-dimensional and temporal characteristics of the heart
paths. Taking a closer look at the resulting short-term patterns, the cluster labels
of the attention scores result in splitting the sequence in path snippets with a
high curvature and a low curvature in the two-dimensional paths. Based on the
cluster labels of the short-term patterns in the temporal domain of the multi-head
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Fig.9: 2D input sequences and attention matrixes for the two long-term patterns
of the simulated heart halves dataset.

attention scores, we observe that the cluster transition is located near the steep
slope of heads.

Interestingly, despite the point-based explanation design, the produced expla-
nations are typically of a more long-ranged nature. The network learns a rich
and structured feature embedding which results in subsquence-based explanations
after the clustering.

Finally, we review the self-attention mechanism and the multi-head attention
block defined by

QK]
Jd

where A; € ]RiTXT denotes the inherent attention matrix. With its quadratic
form in the size of the sequence length, the attention matrix is independent of
the number of dimensions of the input sequence. To get a better understanding
and especially to highlight the effect of the different kernel sizes, we analyze the
inherent attention matrices A; for the sequence classification network trained
on the two long-term patterns of the heart halves dataset. Figure [9] depicts
the resulting attention matrices for the two long-term pattern cluster centroids.
Each attention matrix can be interpreted as a mapping from the input to the
output, where the pixel intensity is an indicator of the importance. This allows
for analyzing which segments of the input sequence were relevant to the output.
For example, a high importance in the lower-left corner of the attention matrix
indicates a strong importance of the first elements of the input for the last
elements of the output. Likewise, the lower-right corner of the matrix indicates
the importance of the last elements of the input sequence to the last elements of
the output sequence.

head; = Attention(Q,;, K;, V;) = A;V; = softmax( )Vi, (5)
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When comparing the different attention matrices in Figures [0a] and [0b] we
notice that, in general, the attention matrices for the three different heads result
in a similar characteristic for the two long-term patterns. Of course, there is a
slight difference in the strength of the importance, but the network in general
focuses on similar regions. Taking a closer look at the attention matrix A; of
head;, we can reason that the small kernel size R = 3 focuses on shorter details,
due to its smaller receptive field. This results in a strong focus on the beginning
and the end of the sequence. The network somehow tries to extract and use
the information of where in the two-dimensional space the sequence started and
where it ended.

On the other hand, when analyzing the attention matrices Ay and Aj, we
see that due to the larger kernel sizes Ry = 9 and R3 = 15 the attention tries
to extract dependencies on longer scales. For example, As can be interpreted
as answering the question of which aspects from the first few elements in the
sequence are important for the first few elements of the output. In contrast, Ag
seems to focus on the inverse question, namely which aspects of the beginning of
the sequence are important for the end of the output sequence (and vice versa).

This way, a visualization of the attention matrix can yield additional valuable
insights into what is important for the classification of sequential data and which
parts the network is focusing on. In the end, the attention head tries to find
descriptive element segments that are common for both classes and segments
which are unique and distinguishable.

5 Conclusion

The descriptive power of eXplainable Aritficial Intelligence (XAI) has great
potential to reason about complex multidimensional sequential data. Reasoning
in this context is of great importance for humans who have to develop, interact
or analyze processes that are described by such data. Visual Analytics (VA) as
proposed by Keim et al. [6] combines approaches, such as data science, deep
learning, and information visualization, in order to automate the process of
knowledge generation and reasoning from complex and large datasets. However,
such frameworks, especially in the domain of sequential data, still lack approaches
that perform semi-supervised automatic extraction of patterns on a global and
local scale.

With this work, we fill a gap of automatically finding patterns in two-
dimensional projections of multidimensional sequential paths. Our approach
is able to extract long- and short-term patterns without the need for strong
supervision. We only need to specify the number of patterns to find. The proposed
approach is easy to incorporate into existing VA frameworks, as the resulting
pattern information can be readily used to enrich existing layouts (e.g., through a
simple color encoding). The computational efficiency of finding long-term patterns
is mostly limited by the used (dis)similarity measure. Replacing the traditional
Dynamic Time Warping (DTW) measure with more efficient approximations such
as FastDTW [I3] can speed up the long-term pattern extraction. The short-term
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pattern extraction is limited by the training time of the proposed self-attention
sequence classification model. However, the slim design of the network with less
than 2000 parameters, and the low amount of epochs needed for training, make
it feasible to train the network on a simple desktop CPU, without the need
for utilizing a cost and energy-intensive GPU. Therefore, our proposed pattern
analysis pipeline remains accessible to a wide range of users. Future work will
focus on evaluating the methodology on real-world data.
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