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Figure 1: Kokiri integrated into Coral [2] comparing lung cancer patient cohorts of different races and genders. The ranked list A

shows the most important attributes for differentiating the cohorts. The overall separability is shown with stacked bar charts B . A
scatterplot D gives an overview of the predicted cohort affiliations of the patients, and a second ranked list C displays all items,
the cohorts they belong to, and the probabilities to belong to any of the cohorts based on the data.

ABSTRACT

We propose an interactive visual analytics approach to characteriz-
ing and comparing patient subgroups (i.e., cohorts). Despite having
the same disease and similar demographic characteristics, patients
respond differently to therapy. One reason for this is the vast num-
ber of variables in the genome that influence a patient’s outcome.
Nevertheless, most existing tools do not offer effective means of
identifying the attributes that differ most, or look at them in isolation
and thus ignore combinatorial effects. To fill this gap, we present
Kokiri, a visual analytics approach that aims to separate cohorts
based on user-selected data, ranks attributes by their importance in
distinguishing between cohorts, and visualizes cohort overlaps and
separability. With our approach, users can additionally character-
ize the homogeneity and outliers of a cohort. To demonstrate the
applicability of our approach, we integrated Kokiri into the Coral
cohort analysis tool to compare and characterize lung cancer patient
cohorts.

Index Terms: Human-centered computing—Visual analytics—;—
—Applied computing—Genomics—

1 INTRODUCTION

With advances in cancer therapy, it is becoming increasingly im-
portant to study information beyond type and stage of a tumor and
patient demographics. Newer drugs directly target specific cancer-
causing gene mutations, enabling treatment that is specifically tai-
lored to the individual patient [19]. However, studies have also
shown that the gene mutations involved differ not only across cancer
types, but also across race and sex [25,32]. This results in variations
in therapeutic outcome across patient cohorts. Uncovering the rea-
sons for these differences is a challenge because of the complexity
of the problem and the amount of data to be considered. Thousands
of genes, several hundred of which have been identified as tumor-
relevant [34], may play a role. Knowledge on how patient cohorts
differ and what the most important differences are is key to further
improving therapy.

Large-scale projects, such as the AACR Project GENIE [1], pro-
vide clinical and genomic data about thousands of patients from
which clinically relevant subtypes can be derived. Reasoning about
such large amounts of data is becoming increasingly complex, and
analysts require powerful tools to gain insights [12]. Visual analytics
tools enable domain experts to visually explore and analyze cancer
cohorts in such large datasets [2, 8, 13, 35]. Comparison of cohorts,
however, is often limited to single attributes or to multiple attributes
that are being considered individually. Combinatorial effects of



multiple attributes are thus lost.
To address these challenges, we propose an interactive visual

analytics approach called Kokiri, which allows users to compare co-
horts by their high dimensional data with the goals of (i) uncovering
driving differences between them and (ii) characterizing the homo-
geneity of individual cohorts. We achieve this by training a random
forest model to classify the cohorts based on their high-dimensional
data. We report the most important attributes that differentiate be-
tween the cohorts and give an overview of the model’s classification
performance. Users can iteratively refine the classification by lim-
iting the data to a subset of interest, for instance, by excluding
genes that are already known to differ between cohorts, to focus
on the remaining data and gain further insights. Additionally, the
homogeneity of individual cohorts can be assessed based on the
classifier’s confidence, and hard-to-classify items can be identified.
To demonstrate the utility of our approach, we describe a use case
where we compare lung cancer cohorts to verify findings from liter-
ature and gain deeper insights into the data from the AACR Project
GENIE [1].

2 RELATED WORK

Comparing cohorts is a fundamental task in cancer research as well
as many other domains that can be supported effectively by visual
analytics tools. While comparison of cohorts looks for differences
between two or multiple cohorts, characterization of a cohort looks
for potential differences within a cohort.

Coral [2] is a cohort analysis tool specifically designed for cre-
ating and characterizing cohorts. However, visual comparison of
cohorts is limited to one or two attributes that must be selected
manually by the user. Coral integrates TourDino [10] for pair-
wise statistical comparison of cohorts by a user-defined set of at-
tributes. In previous work, we have analyzed cohort differences in
low-dimensional embeddings to provide an overview of differences
in high-dimensional space [11]. Summary visualizations explain
the data of individual cohorts, and difference visualizations high-
light differences in attribute distributions between cohorts. Both
visualizations are ranked such that the most and least varying at-
tributes can be seen at a glance. Similarly, Duet [21], shows the most
similar and different attributes for two selected cohorts and uses
textual explanations alongside histograms as summaries of these
similarities/differences. Differences in data distributions were also
considered by Gotz et al. [14]. Their approach seeks to avoid the
introduction of selection bias when creating cohorts. This bias is
determined by calculating the Hellinger distance between pairs of
cohorts. Building on this, Borland et al. [4] presented a set of vi-
sualizations to compare a user-defined focus cohort with a baseline
cohort. In contrast to the approaches above, Somarakis et al. [33] de-
scribed a system for analyzing single-cell omics data where cohorts
can be compared based on the abundance of different cell types and
combinations thereof. The system ranks attributes by their cohort-
differentiating ability and also supports visual detection of outliers
within each cohort. Except for the work of Somarakis et al. [33], all
of the approaches above consider attributes only individually when
comparing cohorts. In doing so, they ignore the vast combinatorial
space of high-dimensional data, from which further differences can
be gleaned. Furthermore, only Coral [2] allows comparison of more
than two cohorts.

In machine learning, classification models categorize items into
classes based on their data. Classification models take advantage
of high-dimensional data to be able to distinguish between classes,
and provide an alternative to traditional pairwise statistics as used in
the approaches above. In our case, the cohorts are the classes that
are to be distinguished. Visual analytics tools can support domain
experts in constructing and analyzing classification models. Endert
et al. [12] reviewed the state-of-the-art approaches to integrating
machine learning methods into visual analytics workflows and also

discussed how classification algorithms and people can work to-
gether. In BaobabView [38], domain experts can interactively create
a decision tree to integrate their domain knowledge into the clas-
sification model. The tool visualizes the resulting decision tree to
analyze splits it makes in the data, the predicted classes in compar-
ison with ground truth, and–as a flow diagram—the way in which
items of different classes are differentiated as they move through the
decision tree. While designed for decision trees, most components
of Boababview can also be applied to the random forest model we
use in this work. The python package [37] for visualizing the flow
of items through the decision tree can also visualize individual trees
of a random forest. However, our focus is on exploratory analysis
of cohorts rather than model building, which is why we do not rely
on visualizations for in-depth model analysis. Infuse [20] is a visual
analytics system for selecting attributes for classification models.
The large overview visualization ranks attributes by various means
of attribute selection algorithms to separate informative from non-
informative attributes for the classification process. In Kokiri, we do
not use attribute selection algorithms but rank attributes by an im-
portance measure computed from the decisions made by the random
forest model. The ranking thus directly reflects the classification
model.

Most closely related to our work is the approach by Rauber et
al. [30], who built on work by Brandoli et al. [6]: In the first step, low-
dimensional representations of the data are shown to visually predict
class separability and, presumably, classification performance. To
improve separability, attribute subsets can be selected based on
their importance in a random forest model. We, in contrast, first
create the model and then create a low-dimensional representation
of its decisions so that the visualization directly reflects the model.
Good separation by the model results in good separation of the
scatterplot, and items for which the model’s prediction is uncertain
are identifiable as outliers. Additionally, we give a preview of the
class distribution for each attribute when ranking them.

3 KOKIRI

Kokiri compares and characterizes subsets of tabular data, here co-
horts.The design and development process included regular feedback
sessions with two experts working in a drug discovery team at a
pharmaceutical company. The workflow within Kokiri, as shown
in Fig. 2, consists of three steps that correspond to its three views:
(i) the Overlap View to see which cohorts share items; (ii) the Com-
parison View to compare cohorts and obtain a ranking of the most
important attributes and an overview of the classification perfor-
mance; and (iii) the Characterization View to examine cohort ho-

Assess Cohort 
Overlap

Compare 
Cohorts

Characterize 
Cohorts and 

Outliers

Kokiri

Refine

Compared 
Attributes

Define Cohorts

Figure 2: The workflow in Kokiri starts with assessing the overlap
between cohorts. The cohorts are then compared to find the most
important differentiating attributes. In the last step, cohort homo-
geneity and outliers are characterized. Based on their findings, users
can compare cohorts on a different set of attributes or refine cohorts
outside of Kokiri.



mogeneity and hard-to-classify items. The individual cohorts are
colored consistently across all visualizations using a categorical
color schema (D3’s Set 3 [5], see Fig. 1).

To compare and characterize the cohorts, we train a random
forest classifier [7] that aims to differentiate them based on the data
provided. A random forest is an ensemble of decision trees that
improves generalization by introducing randomness to the training
process: (a) each decision tree is trained on a bootstrapped sample
of the data; that is, each tree sees a different subset of the data; and
(b) only a random subset of attributes is considered at each split.
To which cohort an item belongs is determined by averaging the
decisions of the forest’s trees. Random forests have the advantages
that they are interpretable, work well for biomedical data, and can
capture complex interactions in the data [9, 16, 27].

Overlap View. The Overlap View shows the pairwise overlap
between cohorts that share items. Each cohort is represented by a
bar, and bars grow in opposite directions. The length of each bar cor-
responds to the number of items in the cohort relative to the number
of items in both cohorts. For example, the overlap of a cohort with
160 items and a cohort with 320 items that share 80 items (20% of
the total items) is visualized as: 20%.
The visualization thus shows the relative overlap and differences
in size, similar to a collapsed representation of an Euler diagram
and the visualization proposed by Borland et al. [4]. In the context
of Kokiri, we have found this visualization better suited than the
alternatives tested—including UpSet [22], Jaccard Similarity [18],
and absolute counts of intersecting items—due to its compactness
and representation of relative cohort sizes.

We highlight the overlap of cohorts at the top of Kokiri’s interface
because overlapping cohorts are harder to distinguish, items may be
part of multiple cohorts, and the random forest model may assign
items to multiple cohorts. As a result, the overlaps also affect the
Comparison and Characterization Views of Kokiri.

Comparison View. We iteratively train a random forest classi-
fier, increasing its number of estimators in steps of 25 up to a total
of 500 to give early feedback on the performance and the most im-
portant attributes. This allows users to stop the training early, giving
them a chance to incorporate their domain knowledge by excluding
already known differences or focusing on a subset of attributes for
the next comparison. Human and machine pattern recognition capa-
bilities can thus be combined, and users gain a deeper understanding
of the resulting classification model and can also actively improve
it [3,12,23]. Attributes important to the classification are determined
by their Gini importance, which is an attribute importance measure
that describes the quality of a split on an attribute: The better the
split, the higher the Gini importance. The values of all splits from
the same attribute are summed per tree and averaged over the whole
forest. As the Gini importance is used to select the best attribute for
splitting the data, it is already computed while the forest is built [27].

The Comparison View gives insights into how well the cohorts
are separable by the data and which attributes are most able to
differentiate them. It consists of two components that are displayed
side-by-side: (i) a ranking of the attributes based on importance; and
(ii) an overview of the classifier’s performance.

We use a tabular visualization [15] in which the attributes
are ranked by their importance for distinguishing the co-
horts (see Fig. 1 A ). Numerical attributes are represented by a
row in the table. Categorical attributes have one row per category,
but can be grouped together by the user. By having one row per cat-
egory, we can show with a bar chart how many items of each cohort
fall within this category. This distribution is shown in a separate
column so that users can understand why an attribute is important
to the classifier. For numerical data, we visualize the distribution of
the cohorts using density plots.

The performance overview shows the mean accuracy score
and the composition of the cohorts as predicted by the classi-

fier (see Fig. 1 B ). We visualize the predicted composition with a
stacked bar chart. Each cohort is represented by a bar, and colored
segments represent the items the classifier assigned to the cohort.
The segments are ordered by their size and segments of misclassified
items have lower opacity.

Characterization View. To characterize cohorts and outliers,
we rely on the classification model trained in the previous compari-
son step. To predict the cohort an item belongs to, each tree of the
random forest casts a vote, and the majority vote decides the class.
The more the votes differ, the less confident the classifier is about
assigning an item to a cohort, and the lower the probability that an
item belongs to a cohort. For N items and k cohorts, the probabilities
form a vector of size N × k. Using this vector, we can characterize
items that are (a) clearly assignable to a cohort, (b) assignable to a
cohort but with low probability because the data deviate, (c) equally
assignable to several cohorts, and (d) assignable to no cohort (i.e.,
outliers).

We visualize these probabilities following an overview+detail
approach with: (i) a ranking of items based on the prediction proba-
bility to quickly identify those that the classifier was most uncertain
about, and (ii) an embedding scatterplot that gives an overview of
the cohort’s homogeneity, potential sub-cohorts, and outliers.

As for the attribute ranking, we use a tabular visualization to
present the item ranking. Initially, the items are ranked in ascend-
ing order according to the maximum in the prediction probabil-
ity vector. The table shows the individual items, the cohorts to
which they belong, and to what degree this assignment was pre-
dicted (see Fig. 1 C ).

For the embedding scatterplot, the prediction probability vec-
tor described above is reduced to two dimensions by means of
supervised UMAP [24]. Supervised UMAP preserves the struc-
tural relationships, but reduces the overlap of classes within clusters.
This allows misclassified items to be identified more easily because
overplotting by other classes is reduced. Beneath the scatterplot
marks, we display a heatmap that shows the cohort with the high-
est prediction probability in the respective area with the cohort’s
color (see Fig. 1 D ). In the heatmap, opacity increases with in-
creasing classifier confidence, that is, when the probability of the
predicted cohort differs most from those of the other cohorts. Thus,
items that can be confidently assigned to a cohort are in an area with
that cohort’s color, while items that can be assigned less confidently
have little to no background. Users can select items in the table or
the scatterplot. The selections are synchronized such that outliers
and subgroups can be explored from both visualizations.

4 IMPLEMENTATION

Kokiri uses a client-server architecture. The server-side is written
in Python, reads the data from a DuckDB [28], and trains a random
forest classifier using scikit-learn [26]. The client-side is a web
component written in TypeScript. We use the LineUp technique [15]
for the rankings of attributes and items and Vega [31] to visualize the
performance overview and the embedding of prediction probabilities
in a scatterplot. Kokiri is open-source and available on GitHub:
https://github.com/jku-vds-lab/kokiri/.

We have integrated Kokiri into Coral [2] as a Characterize oper-
ation to compare cohorts, either by the metadata or the genomics
data, including mutation status. The prototype integration of Kokiri
into Coral is available at https://kokiri.jku-vds-lab.at/.

5 USE CASE

In this use case, we used the prototype integration of Kokiri in
Coral to analyze lung cancer patient cohorts of different races and
genders. The workflow and interactions are demonstrated in the
supplementary video. A recent study [25] has shown differences
in KRAS G12C mutation frequency between these cohorts. The
discovery was based on the AACR Project GENIE [1] data, and
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we were able to reproduce it in Coral [2]. With Kokiri, we want to
investigate whether there are any further mutational differences of
interest. The dataset includes 112935 patients for whom metadata
such as age, gender, and tumor type were recorded, as well as
information on 3252 genetic mutations. For the comparison in
Kokiri, we consider mutations that result in an amino acid change in
any of 719 genes that were identified as tumor-relevant in the Cancer
Gene Census [34].

We start the analysis from a previous session in Coral1 in which
the relevant cohorts have already been created. Coral’s cohort evolu-
tion view shows that the dataset was filtered to non-small cell lung
cancer tumor patients and subsequently split into cohorts of Asian,
Black, and White patients and further into Female and Male patients.
We select Female and Male cohorts for the three races and open
Kokiri in Coral. As the cohorts are created by split operations, the
Overlap View shows only a short note that the cohorts do not over-
lap. In the Comparison View, the cohorts can be compared by their
metadata or genetic mutations. Comparison using metadata excludes
by default all attributes used to create the cohorts. We compare the
cohorts by genetic mutations, which starts training of the classifier
and shows intermediate results after the first 25 decision trees of the
random forest have been trained.

The initial results show that the genes TP53, EGFR, STK11,
KRAS, and FGFR4 differ most between these cohorts. In the
overview of the classifier’s performance, we can also see that for
the White Female and Male cohorts—the two largest cohorts—most
items are correctly assigned. However, large proportions of pa-
tients from the other cohorts are also assigned to these two co-
horts (see Fig. 1 B ). The distribution column of the attribute rank-
ing shows how many patients have a mutation in these genes. As
expected, the mutation frequency of TP53 is high in all cohorts, and
it is also the most mutated gene in the whole dataset. We can also
see that Male cohorts have more TP53 mutations than the Female
cohorts of the same race. The opposite is observed in the distribution
of EGFR mutations, where the mutation is more prevalent in Female
than in Male patients of the same race. A much clearer difference,
however, is seen in the distribution of EGFR mutations between the
two Asian cohorts and the others (see 1 in Fig. 1). Differences in
EGFR mutation frequency between Asian Male and Asian Female
lung cancer cohorts and between Asian and White cohorts have also
been described in a study by Shi et al. [32]. The frequency of KRAS
gene mutations mirrors the distribution of KRAS G12C mutations
described by Nassar et al. [25]. The distribution of FGFR4 muta-
tions, for which the bars are hardly visible (see Fig. 1 2 ), is also
noteworthy. We investigate the distribution of FGFR4 mutations
further and see that there is indeed little difference in the number
of mutations between cohorts (see Fig. 3). However, FGFR4 has
been sequenced much less frequently for the two Black cohorts.
Presumably, there would be no differences between the cohorts if
the same amount of data were available. Nevertheless, the difference
is noteworthy because it raises questions about the data.

To further analyze the trained classifier and the confusion of
Asian and Black cohorts with the two White cohorts, we proceed
with the Characterization View. The embedding scatterplot shows
not only a distinct cluster for each of the six cohorts, but also many
smaller clusters as well as single items. By hovering over one of
the smaller clusters (see 3 in Fig. 1), we see that the probability
of being assigned to the White Female cohort was just 26%. We
select the items in this cluster, which also selects them in the item
ranking, where we can also see probabilities for all other cohorts.
Even though the items in the selected cluster originate from different
cohorts, the prediction probabilities are very similar, which suggests
that their data is also similar. Ranking the items again by maximum
probability, we see further items that the classifier was uncertain
about. This could be a point in the workflow where users leave

1http://vistories.org/kokiri-use-case

Figure 3: Differences in FGFR4 mutation in Coral’s View operation.
Black Female and Male lung cancer patients have had FGFR4
sequenced much less frequently than the other cohorts.

Kokiri and define new cohorts based on the findings (see Fig. 2).
To examine whether there are other differences in the data col-

lected besides FGFR4, we select the overall non-small cell lung
cancer cohort and the Black patient cohort. Kokiri’s overlap visual-
ization shows that the Black cohort is a subset of the non-small
cell lung cancer cohort , and that it is also much smaller:

By comparing the cohorts by mutation frequency, we can now see
that FGFR4 is the most important attribute to classify Black pa-
tients. BRCA1 is also among the most important genes, and the bars
in the distribution column are hardly visible, as seen for FGFR4
in Fig. 1 2 . We find that this gene has also been sequenced less fre-
quently for Black patients: For 50% the mutation status is unknown,
compared to 25% in the entire non-small cell lung cancer cohort.
One reason may be the huge differences in how comprehensively
genomics data are collected at the different facilities at which the
patients are treated.

6 CONCLUSION

In this paper, we have presented Kokiri, a visual analytics approach
to comparing patient cohorts by their high-dimensional data, explor-
ing the driving differences between cohorts, and characterizing the
homogeneity and outliers of a cohort. Kokiri can compare multiple
cohorts at once and captures combinatorial effects in the data by
training a random forest classifier to distinguish between the cohorts.

Kokiri can be applied conceptually and technically to tabular
data from other fields, for example, to explain differences between
clusters in low-dimensional embeddings. We plan to integrate Kokiri
into the Projection Space Explorer [17] for this purpose.

We also plan to enhance the robustness of the classifier and ana-
lyze more specific implementations of random forest classifiers. We
believe that differences in missing data—as shown in the use case
above—can be informative, but recognize the need to give users
the ability to omit their consideration. The heterogeneity we saw
in the use case, presumably due to different origins of the data, is
also a concern when comparing cohorts of multiple datasets. Recent
work [29, 39] has investigated strategies for adapting random forests
to better handle heterogeneous data. Strobl et al. [36] pointed out
a bias in the random forest attribute importances and suggested an
implementation that provides unbiased results.
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